
JOURNAL OF COMPUTATIONAL PHYSICS 1, 3%-‘%05 (1967)

Computational Problems Associated with Racah Algebra’

J. STEIN

The Hebrew Universiiy, Jerusalem, Israel

In a program written by the author, for performing various calculations in the
Racah algebra, some new calculational methods were used; these methods are described
in this paper. They include: (1) a representation of numbers alternative to the Roten-
berg form; (2) a new algorithm for calculating the greatest common devisor of two
odd integers, which was developed for reducing the calculating time in the new re-
presentation; (3) methods for shortening the computation time of 3-j and 6-j symbols.

In atomic spectroscopy, it is often necessary to calculate matrices, the elements
of which are functions of 6-j or 3-j coefficients. These matrices can be calculated
in two ways: one is by using floating-point numbers; the other [l], [2] by exact
calculation, using the fact that these numbers can be expressed in the form
+ (a/b)ll” where a and b are integers [3].

Most of the large computers are capable of doing fast floating-point calcula-
tions with a high order of precision (hardware or software), so that the first
way is accurate enough, simpler than the second, and can be more easily used
by FORTRAN programming. Nevertheless many physicists prefer the second way
because of two reasons. (1) these matrices are standard matrices, calculated “once
and for ever” and are used for many applications where various degrees of preci-

1 This paper was partially supported by the A.F.C.S. through the European office, Aerospace
Research, U. S. Air Force.

397

398 STEIN

sion are needed. The best way of keeping standard matrices is to have them in
absolute accuracy. (2)-a more “emotional” reason-there are those aesthetic
people who like “nice” numbers such as (105/l O24)1’2 and who do not like “dirty”
numbers such as 3.141592653589. These people would prefer, of course, the sec-
ond way.

In this paper we describe some of the methods we used in a program for cal-
culating angular integrals which appear in the energy matrix of electrons and
nucleons in various configurations.

The following sections contain

(1) A number form that can be used as an alternative to the Rotenberg form
[4]. Arithmetic calculations in this form make use of a new algorithm for cal-
culating the greatest common divisor (GCD) of two integers.

(2) Methods to shorten the computation time of 3-j or 6-j symbols.

I. MULTIPRECISION ARITHMETIC

Rotenberg [4] numbers2 are very useful for calculations in the Racah algebra;
they have, however, one disadvantage: they take up much computer memory.
As the computer we used had only 8K memory locations we had to use a more
compact representation of the numbers, which is described in this section. This
representation has also the advantage of not having the limitations of the Roten-
berg representation. The price that we had to pay for these advantages was exe-
cution time; mainly in the multiplications. We could not compare times with the
Rotenberg numbers because there were no subroutines for addition and multi-
plication of Rotenberg numbers on the PHILCO 2000.

Every number in the Racah Algebra can be expressed in the form

2 In the Rote&erg form [4] the number a is decomposed in the form

a z b . fi p;” zz b . 2”’ . 3”” . 5”3 . 7”’ p;fl
1

where px are the prime numbers in ascending order, nk are integers or half-integers and b is an
integer which is not divisible by p1 pN. The number appears in the computer memory as one
integer b and a vector of the small integers 2n, 2nx. In practical calculations, N must be. large
enough so that, in all the factorials which appear in the 3-j or 6-j symbols, b will be equal to
one. A generalization of this representation where b can be a fraction or a root is much less
useful, and in the rare cases where it is needed, our procedure is much simpler and, probably,
shorter.

COMPUTATIONAL PROBLEMS ASSOCIATED WITH RACAH ALGEBRA 399

& (a/b)l’” * 2k’2 where a and b are odd integers, and k is an integer. For most
purposes single- or double-precision integers a, b are enough (for computers
having 48 bits per word). A number in this form takes three or five words in a
computer memory (if one does not exceed double precision) : one for the sign and
powers of 2; one or two for a; one or two for b (the reason for using a and b
odd will be explained soon). A good arrangement of the auxiliary word is: the
sign in the lowest bit and the powers of 2 in the left half. The numbers will be cal-
led a, b, and p where p = (Q, S) Q = powers of 2, S = sign (1 for minus).

In this paper we shall use the abbreviation GCD for greatest common divisor.

Multiplication

(a,, b,, ~1) * 6~2, bz, ~2) - (03, b,> ~3)

where
al a2

Q3 = GCD(a,, b,) * GCD(a,, b;j’

b, = b1 b,
GCW,, b,) * GCD(a, , b,) ’

P3=Pl+P2.

So, if al/b, and a,/b, are reduced to the lowest terms, so also is a,/b,.

Addition :

(al, bl, pd + (a2, b,, p,) - G3, b,, p3).

Let us assume that Q1 < Q, and that the two numbers have the same sign; then

T = GCD(u, , a,),

al
I,

= al/T, a2 I’ = a,lT,

a2
I,

a21 = -

h

a,z 6; * 2Q2-Q1,

a3’ = ((a,‘)“2 + (a,‘)1’2)2.

Now we shift a3’ to the right as far as possible and obtain

a3 ” = a ; * 2-R,

400 STEIN

a3 = (ai’/GCD(a3”, b3’)) * T,

Qs = Ql + R
s, = S,[= S,].

b, = b3’/GCD(a3”, b3’),

Greatest Common Divisor

The bottleneck of the addition and the multiplication is the calculation of the
GCD of various numbers. The old algorithm for this is the algorithm of Eu-
clid [5]. Here a new algorithm is developed, adopted specially to binary computers.

The new algorithm is based on the obvious statement that if a and b are odd
integers and a > b, then GCD (a, b) = GCD(b, (a - b)/2).

Let a and b be two odd integers,

then

a, = max(a, b), b, = min(a, b);

cl = a, - b,.

Now we shift c1 to the right as far as possible without losing nonzero digits;
this operation will be called SHIFT.

dl = SHIFT(q)

a2 = maWI, W,

d, = SHIFT(a2 - 6,)

b, = min(d,, b,)

a, = maxGLl, b-d, b, = min(d,-, , b,-,)

d, = SHIFT@, - b,).

The procedure continues until a, = b,[= GCD(a, b)].
The number of steps is at most equal to the length of a, (in bits) minus 1. On

the average, if GCD(a, b) = 1, the number of steps is equal to half of that length.
It is suggested that the first step will always be a division to equalize the order

of magnitude of the two numbers and then to proceed by the new algorithm.
This new way is much faster than the old one, mainly because of the long

COMPUTATIONAL PROBLEMS ASSOCIATED WITH RACAH ALGEBRA 401

division time compared with the short addition or shifting time. The convergence
speed is also better by the factor 2 than in the old algorithm. When one goes to
a higher precision than double, the divisions become intolerably complicated and
long, and then this method becomes even more powerful.

This discussion would not be complete without mentioning an alternative way,
which, although not used by us, is very reasonable for certain computers. In the
algorithm described above, we eliminated the lowest bit in each step and then
shifted to the right; in the alternative algorithm, we eliminate the left-most bit
in each step and then shift to the left.

The method is based on the instruction “NORMALIZE" which exist in some com-
puters (e.g., the CDC 6000 series or the IBM 1130). This instruction is normally
used for normalizing unnormalized floating-point numbers and to convert fixed
-to floating-point numbers, by shifting them to the left in one register and count-
ing the number of shifts in another register.

The advantage of using left shifts instead of right shifts is that the right shifts
are done by a loop of shifts and tests, while the left shifts can be done by a single
instruction, which also counts the shifts.

This left-shift method is based on a somewhat less obvious theorem than the
first one:

If a and b are positive integers and if a > b, then

GCD(a, b) = GCD(b, a - 2kb)

where k = [log,a] - [log,b] (the brackets indicate that the integer part of the
log must be taken).

The proof is obvious, except for the powers of 2, because this time we did not
demand that a and b be odd. We shall, therefore, prove it for the powers of 2.

Let us assume that a = c . 2” and b = d . 2” where c and d are odd integers,
and therefore GCD(a, b) = e + 2min(m,n) where e is also an odd integer; all we
have to prove is that if a - 2k + b =f . 24, then min(m, n) = min(n, q).

If m 2 n, then

a - 2kb = (c . 2m-n - d . 2b) . 2n;

therefore q 2 n, and min(m, n) = n = min(n, q).
If m < n, then

a - 2kb = (c - d , 2n+k-m) . 2”;

n > m, so c - d . 2nfk-m is odd, and therefore q = m, and min(m, n) =
min(n, q). Q.E.D.

402 STEIN

Let N(a) be the “normalized” a, and S(a) the number of left shifts needed for
the “normalization”. Suppose that a > b; then GCD(a, b) can be calculated by
the following procedure;

a1 = Wa),

b, = WI,

a2 = Nla, - b,Ih

b, = 41, a,),

s, = S(a)

Tl = S(b)

Ul = Sl,

S2 =Wa,-bb,/)+U,,

T2 = max(S,, T,),

ZJ, = min(S,, T,),

where m(b,, a2) is equal to b, if T, > S,, and to a2 if TX < S,.

a3 = NIa2 - b,/), s3 =S(la,-b,I)+ u2,

b3 = m(a3, b2), T3 = ma@,, T,),

U, = min(S,, T,),

for n > 2: a, = NC I an-1 - b-2 I), S, = s(I an-1 - h-2 I) + U,-, ,

b, = m@, , h-d, T, = max(S,, T’d

U, = min(S,, T,-,).

The calculation terminates when a,,, = 0, and then

GCD(a, b) = a, * 2-993

This method, like the previous one, can also be used with multiple-precision
numbers, where, of course, the shifting will be a little more complicated; but there
is no essential difference.

II. CALCULATION OF 3-j AND 6-j SYMBOLS

There is no doubt that the best way to calculate Racah and Wigner coefficients
at random is by using Rotenberg numbers, and the simplest formulas for these

COMPUTATlONAL PROBLEMS ASSOCIATED WITH RACAH ALGEBRA 403

coefficients [6]. The only problem is how to minimize the time needed for these
calculations. For this purpose the following methods are useful.

(1) 3-j and 6-j symbols are build up from factorials. The calculation of these
factorials is long and each 6-j symbol contains at least 24 of them. The calcula-
tion time can therefore be reduced by a large factor if one keeps, in the computer-
memory, a table of all the factorials one may need in Rotenberg form. The number
of factorials needed is not great : it is equal to 45,,,, + 1, when J,, is the largest
value of J used in the calculation. In all the applications to atomic spectroscopy
in the near future Jlnax= 50 seems to be enough; which means 201 factorials.

(2) Additions and subtractions are the bottleneck of the calculation of the
3-j and 6-j symbols. In order to make the additions as short as possible one should
avoid the use of subroutines for adding pairs of Rotenberg numbers, because
these subroutines cause a great waste of computer time if the sum to be evaluated
contains more than two terms. When one has to add three or more terms in a
calculation of a 3-j or a 6-j symbol, then for each pair of numbers the subroutine
finds the common denominator, takes out the GCD of the two numerators, trans-
forms what remains of the numerators into integers, adds, and then transforms
the sum back to the Rotenberg form. This final transformation is the longest part
of the addition, because the computer has to try to divide the sum by all the prime
numbers up to 45,,,,+ 1 where J,,,, is the greatest J in the calculation. In order
to save computer time when there are more than two terms to add, one should
postpone the transformation back to Rotenberg numbers, to the end of the ad-
dition process. (When there are many terms in the sum, it is useful to divide it
into smaller groups of 5-10 terms, and so to reduce the use of multiprecision in-
tegers). For this purpose, we have written a generalized addition subroutine, as
a part of the 6-j subroutine, based on the following algorithm:

Consider a sum of n terms, n 2 2: A,, A,, A,, A,
(1) Calculate the greatest common divisor (GCD) of A,, A,.

R, = GCD(A,, A,), Al’ = AI/R2, AZ’ = AZ/R,.

Convert A,’ and A,’ to integers and add: B, = Al’ + A,‘.
(2) Calculate the GCD(R,, AS): R, = GCD(R,, A,);

A,’ = AsIR,, R,’ = RJR,.

Convert R,’ and A,’ to integers and add: B, = B, * &’ + A,

(n - 1) R, = GCD(R,-, , A,) (Rotenberg),

4,’ = A,IR,, R;-, = R,-JR, (Rotenberg).

404 STEIN

Convert A,’ and Ri,+, to integers and add:

B, = B,-, * RAM, t- A,’ (integers).

At the end, transform B, to the Rotenberg form.

Timing

In order to compare computation times of 6-j symbols in our method to other
programs, we wrote a 6-j subroutine for the IBM 7040. The times were compared
to those quoted in [l]. In this comparison it is necessary to take into account that
the times of [I] were measured on the IBM 70903 which is about 4 times as fast
as the 7040.

6-j
Time Time
7040 7090

27 msec 12 msec

114 msec 160 msec

300 msec 1 set

The greatest value of j for which our subroutine can calculate {i i j } using
only single-precision integers (35 bits) is 8. Using double-precision integers we
can go up to j = 16. The subroutine is not built for integers of greater than dou-
ble-precision, but it can be modified to use higher precision without increasing
the calculation-time of those 6-j symbols for which lower precision is enough.

ACKNOWLEDGEMENT

We are indebted to Professor 5. M. Blatt and to Dr. Y. Bordarier for fruitful discussions of
the methods described in this paper.

3 From [l] it is not clear whether the times were measured on the IBM 7090 or on the 7094,
which is much faster; however, for our comparison, it is enough to assume that the times were
measured on the 7090.

COMPUTATIONAL PROBLEMS ASSOCIATED WITH RACAH ALGEBRA 405

REFERENCES

1. R. M. BAER and M. G. REDLICH, Commun. ACM 7, 657 (1964).

2. Y. BORDARIER (unpublished).

3. A. R. EDMONDS, “Angular Momentum in Quantum Mechanics,” Princeton University
Press, Princeton, New Jersey (1957).

4. M. ROTENBERG, R. BIVINS, N. METROPOLIS, and J. K. WOOTEN, “The 3-j and 6-j Symbols,”
Technology Press, Cambridge, Massachusetts (1959).

5. Euclid, “The Elements,” Vol. VII, Propositions l-3 (circa 300 BC).

6. U. FANO and G. RACAH “Irreducible Tensorial Sets,” Academic Press, New York (1959).

